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Abstract

A low-cost and accurate positioning solution is significant for the massive deployment of
fully autonomous driving vehicles (ADV). Conventional mechanical LiDAR has proven
its performance, but its high cost hinders the massive production of autonomous vehi-
cles. This paper proposes a low-cost LiDAR/inertial-based localization solution for
autonomous systems with prior maps in urban areas. Instead of relying on the costly
mechanical LiDAR, this paper proposes to utilize the solid-state LiDAR (SSL) with the
prior map to estimate the position of the vehicle by matching the real-time point clouds
from the SSL and the prior map using the normal distribution transformation (NDT)
algorithm. However, the field of view (FOV) of the SSL is signifcantly smaller than the
conventional mechanical LiDAR, which can easily lead to failure during the NDT map
matching. To fill this gap, this paper proposes to exploit the complementariness of the iner-
tial measurement unit (IMU) and the SSL, where the IMU pre-integration provides a coarse
but high-frequency initial guess to the map matching. To evaluate the effectiveness of the
proposed method in this paper, the authors collect the dataset in two typical urban scenar-
ios through a pedestrian hand-hold and a vehicle driving condition. The results reveal that
the SSL-only-based localization is significantly challenged in dynamic scenarios. With the
help of the IMU, the robustness of the proposed method is significantly improved, achiev-
ing an accuracy of within 0.5 m. To show the sensitivity of the SSL-based map matching
against the initial guess of the state, this paper also presents the convergence results of the
map matching under different levels of accuracy in terms of the initial guess.

1 INTRODUCTION

Autonomous driving vehicles (ADV) [1–4] have recently
received increasing attention due to their high potential to
improve dense traffic congestion and unexpected traffic acci-
dents. Accurate and globally referenced positioning is one of
the keys to its realization. Global navigation satellite systems
(GNSS) can provide high accuracy positioning for autonomous
vehicles in open areas up to 5 m [2, 5]. GNSS positioning
errors can rise significantly in urban canyons due to multipath
effects and non-line-of-sight (NLOS) [6, 7]. To fill this gap,
the LiDAR matching-based localization [3, 4, 8] with the prior
map is a promising solution to provide the globally referenced
and accurate positioning. Currently, the existing LiDAR map
matching-based localization solution mainly relies on the 360◦
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rotating mechanical LiDAR, such as the 64 channels Velodyne
HDL 64(about US$75,000) [9]. Specifically, the map matching-
based localization is achieved by associating the real-time 3D
point clouds from LiDAR with the globally referenced prior
map. However, the high cost of the mechanical rotating LiDAR
was one of the major factors preventing its massive deploy-
ment in autonomous vehicles. Due to its cost-effectiveness, the
recently developed solid-state LiDAR (SSL) (about US $800)
opens a new window for LiDAR matching-based localization
[10]. However, the utilization of the SSL has a major drawback
as the field of view (FOV) of the SSL is limited and signifi-
cantly smaller than the one from conventional mechanical 3D
LiDAR. A comparison of the FOV for the SSL and 16 chan-
nels mechanical LiDAR is shown in Figure 1. The mechanical
LiDAR can capture the features from 360◦ of FOV, but only the
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FIGURE 1 Comparison of the FOVs of conventional mechanical LiDAR
versus solid-state LiDAR. (a) The 3D point clouds from the VLP-16 (about
US$4000). (b) Livox-Horizon (US$800). FOV, field of view

front features are perceived via the SSL. As a result, the failure
in SSL-based map matching occurs [11].

To exploit the potential of the SSL and relax the problems
of smaller FOV, this paper proposes an SSL/inertial integrated
localization solution with a prior map in urban canyons. The
contributions of this paper are mainly threefold:

a. This paper proposes an SSL-based LiDAR localization
method for autonomous driving vehicle localization in
urban canyon scenarios. Unlike the conventional Livox-
based LiDAR SLAM methods that can only provide relative
pose estimation and are subject to drift over time, this paper
exploits the potential of the low-cost SSL-based drift-free
localization with the prior map significant implications for
reducing the cost of future self-driving vehicles.

b. To alleviate the drawback of the small FOV of the SSL, this
paper improves the SSL matching performance in dynamic
scenarios by complementarily fusing a low-cost inertial mea-
surement unit (IMU) sensor, which provides a better initial
guess of the LiDAR matching.

c. This paper verifies the effectiveness of the contributions of
this paper step by step using hand-held and driving datasets.
Meanwhile, we analyze the sensitivity of the initial pose
against the LiDAR matching. We also discuss the effect of
different grid sizes and initial guesses on the NDT-based
LiDAR matching algorithm in the case of using the new SSL.

The rest of this paper is structured as follows: First, the
related work will be presented in Section 2 before the overview
of the proposed method is introduced in Section 3. Then, the
proposed localization system based on LiDAR/inertial/prior
map integration is presented in Section 4. Finally, the exper-
imental verification is presented in Section 5 before the
conclusion is illustrated in Section 6.

2 RELATED WORKS

Scholarly works on localization for ADV are extensive and any
attempts to give a full relevant review would be incomplete.
In this connection, this section focuses on LiDAR matching-
based localization and its advancement. The most pioneer work
for LiDAR matching-based localization was conducted by the
team from Stanford University [12], where the reflectivity-based

matching algorithm is developed to achieve accurate position-
ing. The work was improved [3] by integrating more sensors.
However, only the 2D localization result was derived with the
probabilistic map where the 3D geometry is not fully explored.
As a result, the method can be sensitive to the change in
road textures. To fill this gap, work in [13] developed a multi-
resolution-based probabilistic map to increase the robustness
of the system against unexpected changes in the road textures.
However, these methods failed to fully explore the potential of
the 3D pose estimation from LiDAR matching. Another map
matching-based localization was based on geometry-based data
association which could provide 3D pose estimation. Its pri-
mary principle of LiDAR matching is to match the point clouds
collected from the 3D LiDAR and the prior map. The itera-
tive closest point (ICP) [14] is the typical method to estimate
the relative motion of two overlapping point clouds, which is
the most classical matching method. Due to the sensitivity of
the ICP on the local minima phenomenon, improvements are
studied in [15–17], one of which is G-ICP [18], which uses the
geometry distributions via the Gaussian modelling, resulting in a
significant improvement in accuracy over the original ICP algo-
rithm [18]. However, the nearest-neighbour search imposes a
heavy computational load on the ICP algorithm, making the sys-
tem unable to perform real-time matching when the number of
point clouds is vast, which is a fatal flaw for autonomous vehicle
systems [18]. V-GICP is a further improvement of the G-ICP
algorithm [19]. It combines normal distribution transformation
(NDT) to voxelized the point cloud and then estimates the
voxel distribution. The experimental results show that V-GICP
reduces the computational load of the system while ensuring
accuracy with the G-ICP algorithm. Nevertheless, the various
G-ICP algorithms cannot meet the requirements for system
real-time in real scenarios [20, 21]. Therefore, the bottleneck of
G-ICP algorithms and their variants is how to guarantee the
matching accuracy and at the same time significantly reduce
the computational load [22]. To fill this gap, the NDT algo-
rithm was developed for efficient map matching [22, 23]. This
was achieved by dividing the dense raw point clouds into rep-
resentative voxels which guaranteed computational efficiency.
Moreover, the modelling of the voxel representation enabled the
exploration of the geometry features which increases the accu-
racy of the algorithm in terms of the data association. According
to a recent evaluation in [24], better positioning accuracy and
robustness are obtained based on the assessment using typi-
cal autonomous driving datasets collected by the 360◦ rotating
mechanical LiDAR. As a result, the NDT-based map matching
was employed in a wide range of autonomous driving applica-
tions [25–28]. Unfortunately, all these LiDAR matching-based
localization mainly relied on the mechanical 3D LiDAR which
is too expensive for massive deployment in ADVs. This is one
of the key issues preventing the arrival of the ADV.

LOAM-Livox [29] utilizes the odometry from directly regis-
tering a new scan to a global map to deal with the small FOV
of SSL. To reduce the cost of the localization system, the SSL-
SLAM [30] proposed a novel lightweight SLAM framework for
low-cost Realsense L515 SSL. High-rate IMU measurements
can compensate for LiDAR distortion and increase the robust-
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476 ZHONG ET AL.

FIGURE 2 Overview of the proposed algorithm. The main inputs are the
point cloud data collected by the LiDAR, the prior map, and IMU data. The
output is the pose estimation of the system. IMU, inertial measurement unit

ness and accuracy of the LiDAR odometry by providing good
initial guesses. The LiLi-OM [30] integrated the SSL point cloud
and the IMU measurements by employing the sliding windows
FGO in the system. Instead of using FGO, the FAST-LIO
[31] adopted a tightly coupled iterated Kalman filter to fuse
the measurements from LiDAR and IMU. As an extension of
FAST-LIO, FAST-LIO2[32] achieved high accuracy with lower
computational load by integrating an incremental k-d tree and
direct raw point cloud registering into FAST-LIO. Taking the
advantages of camera sensors, R2LIVE [33] fused the camera
measurements and the LiDAR-inertial system shows its suffi-
cient robustness in various environments. However, all these
works focus on achieving low-drift relative motion estimation
using the onboard SSL LiDAR, IMU, and camera, where the
estimated pose is subjected to drift over time.

3 OVERVIEW OF THE PROPOSED
METHOD

3.1 System overview

The overview of the proposed system is shown in Figure 2. The
input of the system contains three parts: one is 3D point cloud
data collected using low-cost SSL, the others are the measure-
ment of the accelerators and gyroscopes in IMU, and the last
one is the 3D point cloud from the prior map. High-frequency
IMU measurements are obtained between two consecutive
frames. To reduce the computational loads, the IMU pre-
integration [34] technique is employed to integrate multiple
IMU measurements into a pre-integration term. The IMU pre-
integration provides high-frequency pose estimation (∼200 Hz),
serving as the initial guess of the LiDAR matching (∼10 Hz).
Meanwhile, the estimated pose from the LiDAR matching will
be integrated with the IMU pre-integration term to correct the

FIGURE 3 Factor graph structure of the proposed integration scheme

bias of IMU. To make the presentation clear, in this paper,
matrices are denoted in uppercase with bold letters. Vectors are
denoted in lowercase with bold letters. Variable scalars are rep-
resented as lowercase italic letters. Constant scalars are denoted
as lowercase letters. The notations and frames used in the whole
paper are defined as follows for clarifying the proposed pipeline.

4 LIDAR/INERTIAL/PRIOR MAP
INTEGRATION

4.1 Factor graph structure of the proposed
localization system

As shown in Figure 2, the key of the proposed system is the
integration of the pose estimations from IMU pre-integration
and the LiDAR scan matching based on the prior map. To
achieve this, this paper adopts factor graph optimization (FGO)
to integrate the two pieces of information. Figure 3 illustrates
the factor graph of the integration. The grey circle represents
the state of the IMU frame. Two types of factors constrain the
states, one is the LiDAR pose factor and another one is the IMU
pre-integration factor.

In this paper, the IMU body frame is represented as {⋅}
B

. The
LiDAR frame is represented as {⋅}

S
. {⋅}

W
represents the world

frame which refers to the reference point of the prior point
cloud map. The IMU state at kth epoch can be expressed as

𝝌 ∈ {x0, x1, … , xn−1, xn} (1)

with

xk =
[
pW

Bk
, vW

Bk
, qW

Bk
, ba,k, bg,k

]
(2)

where the subscript Bk is the IMU body frame while the kth
stage point cloud is obtained. The pW

Bk
denotes position and vW

Bk

represents velocity. The orientation is represented as qW
Bk

in the
world frame. ba,k and bg,k denote acceleration and gyroscope
bias, respectively. The transformation matrix of IMU concern-
ing the world frame at the kth epoch can be represented as
TW

Bk
∈ SE (3)

TW
Bk
=

[
RW

Bk
pW

Bk

0 1

]
(3)
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ZHONG ET AL. 477

where RW
Bk
∈ SE (3) represents the rotation that corresponds

to qW
Bk

. The LiDAR point cloud at the kth frame is Sk . Note
that the extrinsic parameter between the IMU and then LiDAR
which is denoted by the TS

B is calibrated beforehand [35]. There-
fore, the transformation TW

Bk
can be defined which would be

used in the processing of modelling of IMU measurements as
follows:

TW
Bk
= TS

B T
B0
Bk

(4)

4.2 IMU pre-integration factor

This section presents the modelling of the IMU pre-integration
factor. IMU measures the rotation rate and acceleration of the
sensor itself concerning its body frame using accelerometers
and gyroscopes.

The raw measurements include acceleration âBand angular
velocity !̂B in IMU frame B. bg represents the bias of !̂B , n𝜔

denotes the additive noise of the acceleration of !̂B . ba represents
the bias of âB , na denotes the additive noise of the acceleration
of âB . Taking into account the measurement noise n and bias b,
the measurement of IMU is defined as follows:

�̂�
B
= 𝝎B + bg + n𝜔 (5)

âB = R
BW (

aW − gW
)
+ ba + na (6)

R
BW is the rotation matrix from the world frame to the IMU

body frame. gW is the constant gravity vector in the world frame.
aW represents the noise-free acceleration of the system in the
world frame.

Typically, the frequency of LiDAR is much smaller than the
frequency of IMU, so there are many IMU measurements in the
time it takes to receive two frames of LiDAR point clouds. IMU
pre-integration accumulates a large number of IMU measure-
ments and models them as a single relative motion constraint.
Such processing avoids repeated calculations for the same pose
and reduces the computational load on the system. The t and
t + 1 are assumed to be two consecutive time instants between
Bk and Bk+1. The angular velocity 𝝎 and the acceleration a
between t and t + Δt can be expressed as

𝝎 =
1
2

((
�̂�

Bt − bgk

)
+
(
�̂�

Bt+1 − bgk

))
(7)

a =
1
2

(
q

Bk
Bt

(
âBt − bak

)
+ q

Bk
Bt+1

(
âBt+1 − bak

))
(8)

where the pre-integrated translation 𝜶Bk
Bk+1

, the velocity 𝜷Bk
Bk+1

,

the rotation q
Bk
Bk+1

between Bk and Bk+1 can be expressed by the
following equations [34, 36]:

𝜶
Bk
Bk+1

= 𝜶
Bk
Bt

+ 𝜷
Bk
Bk+1

Δt +
1
2

aΔt 2 (9)

𝜷
Bk
Bk+1

= a
Bk
Bt

+ aΔt (10)

q
Bk
Bk+1

= q
Bk
Bt

⊗

[
0

1
2
𝝎Δt

]
(11)

Therefore, the observation measurements z
Bk
Bk+1

generated by
pre-integration can be denoted as

z
Bk
Bk+1

(IMU )
=
{
𝜶

Bk
Bk+1

, 𝜷
Bk
Bk+1

, q
Bk
Bk+1

, bak+1, bgk+1

}
(12)

the residual for IMU pre-integration between two IMU states
can be defined as

r

(
z

Bk
Bk+1

(IMU )
, 𝜒

)
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

r p

rv

rq

rba

rbg

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

qW
Bk

−1 (
pW

Bk+1
− pW

Bk
− vW

Bk
Δt −

1

2
gW Δt 2

)
− 𝜶

Bk
Bk+1

qW
Bk

−1 (
vW

Bk+1
− vW

Bk
− gW Δt

)
− 𝜷

Bk
Bk+1

2

[
q

Bk
Bk+1

−1
⊗
(

qW
Bk

−1
⊗ qW

Bk+1

)]
xyz

bak+1 − bak

bgk+1 − bgk

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(13)

where [⋅]xyz is used for extracting the imaginary part of a quater-

nion. Here the ⨂ denotes multiplication between two different
quaternions.

4.3 LiDAR modelling

4.3.1 LiDAR NDT matching

The principle of the LiDAR matching-based localization is to
associate the real-time point cloud with the prior map. This
paper refers to the prior map point cloud as the source point
cloud and the point cloud scanned by the SSL as the matching
point cloud. In this paper, the pose is first estimated by conduct-
ing the map matching based on the NDT before its integration
with IMU using FGO. Unlike ICP mentioned in the previous
section, the NDT algorithm first divides the point cloud into
voxels instead of matching directly with the target points. If the
voxel being divided contains more than five points, the method
calculates the mean 𝝁 and the covariance matrix

∑
to calculate

the normal distribution [23]

𝝁 =
1
m

m∑
i = 1

(k,i) (14)
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478 ZHONG ET AL.

ALGORITHM 1 Proposed IMU Aided LiDAR matching

Input: The source point cloud S and the matching point cloud m, IMU
measurements; Initial pose of transformation p⃗ini

Output: The pose estimation of the system (T (p⃗,k )).
S1: p⃗ ← p⃗ini
S2: Matching S and m based Equations (13)–(17)
S3: While p⃗ has been updated
(Perform IMU pre-integration: solving Equations (5)–(13) with FGO)
S4: For all points xn ∈ xm find the cell xS that contains (T (p⃗,k ), then

update ⃖⃗gr, H

S5: Solve Equation (17), then p⃗ ← p⃗ + Δp⃗

S6: Repeat Step 2 to Step 5

∑
=

1
n

n∑
i = 1

(
(k,i) − 𝝁

) (
(k,i) − 𝝁

)T
(15)

the (k,i) denotes the probability of a point enclosed by the cell
i. When both the covariance matrix and the mean are derived,
the D-dimensional normal distribution is represented as follows
[22, 23]:

p
(
(k,i)

)
=

1

(2𝜋)
D
2

√||∑|| exp
⎛⎜⎜⎝−
(
(k,i) − 𝝁

)T∑−1 (
(k,i) − 𝝁

)
2

⎞⎟⎟⎠
(16)

The score function for a single-source point can be calcu-
lated from Equation (17). Taking the logarithmic likelihood of
the entire expression can have the effect of correcting for the
impact of outliers [22, 23]:

score
(
p⃗
)
= −

n∑
k = 1

p̃
(
T
(
p⃗,k

))
(17)

HΔ p⃗ = −⃖⃗gr (18)

and Equations (18) expressed Newton’s law. H represents the
Pseudo-Hessian matrix, and ⃖⃗gr denotes the gradient vector.
T (p⃗,k ) ∈ SE (3) represents the transform k by vector p⃗ ∶

T
(
p⃗,k

)
=

[
RW

Sk
pW

Sk

0 1

]
(19)

where R
W
Sk
∈ SO(3) denotes the rotation matrix, pW

Sk
stands for

the translation.
Once the source and matched point clouds are input into the

system, the pose estimation is performed according to Algo-
rithm 1. Specifically, the performance of the NDT matching
relies heavily on the performance of the initial guess of the pose
estimation. Different from the conventional LiDAR standalone-
based matching scheme, we adopt the high-frequency pose
prediction from the IMU prediction as to the initial guess of the
LiDAR scan matching, to get rid of the potential local minimum
of solving Equations (17).

Using the SSL for NDT matching differs from the con-
ventional mechanical LiDAR for NDT matching. Theoretically,
the pseudo-Hessian matrix (H) is the bridge connecting the
measurements (the raw 3D point clouds) and the states to be
estimated. Therefore, the degree of constraints can be inferred
by the pseudo-Hessian matrix. In our previous research [37], the
eigenvalues of the pseudo-Hessian matrix H were investigated
to be used to measure the degree of the overall constraints based
on visual measurements. If the degree of the overall constraint is
low, the degeneration of the state estimation can occur. In other
words, these eigenvalues represent the degree of constraints in
six different directions (position and orientation). By compar-
ing the six eigenvalues of two different sensors, conventional
mechanical LiDAR, and SSL, we can illustrate the adverse effect
of small FOV on NDT matching. For the matrix H , the singular
value decomposition (SVD) [38] can be represented:

H = U ∧ VT (20)

the matrixes U and V are both the real 6 × 6 orthogonal matrix,
and the matrix ∧ is a real 6 × 6 diagonal matrix with non-
negative real numbers on the diagonal. The diagonal entries
𝜆e = ∧ee can be considered the eigenvalues. The subscript e
denotes the index of all the six eigenvalues:

𝝀 = [𝜆1 𝜆2 𝜆3 𝜆4 𝜆5 𝜆6] (21)

where the 𝜆1, 𝜆2, 𝜆3 denote the eigenvalues associated with the
position estimation. The 𝜆4, 𝜆5, 𝜆6 denote the eigenvalues asso-
ciated with the orientation estimation. The smaller 𝜆e indicates
a weaker constraint in the associated direction. Therefore, the
comparison of all the six eigenvalues can show the differences
in the degree of constraints from different LiDAR sensors while
using NDT matching.

4.3.2 LiDAR matching factor modelling

The transformation T (p⃗,k ) estimation from LiDAR matching
is estimated by NDT matching, then for the LiDAR matching
factor, this transformation can provide an absolute constraint.
The transformation from the LiDAR matching frame to the
IMU body frame can be represented as follows:

T
W
Bk
= T

W
Sk

T
S
B (22)

then we can get observation from LiDAR scan matching as
follows:

Z
W (LiDAR)

Bk
=
[

P̃
W
Bk

q̃W
Bk

]
(23)

where the ZW
Bk

(LiDAR)
denotes the observation concerning the

LiDAR scan matching, which includes the position (P̃W
Bk

) and
orientation (q̃W

Bk
). Therefore, the residual rS(T (p⃗,Pk ), 𝜒) from
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the NDT matching can be defined as

rS

(
T
(
p⃗,Pk
)
, 𝜒
)
=

⎡⎢⎢⎢⎣
pW

Bk
− P̃

W
Bk

2
[
qW

Bk

−1
⊗ q̃W

Bk

]
xyz

⎤⎥⎥⎥⎦ (24)

4.4 Factor graph optimization

FGO aims to minimize the sum of the Mahalanobis norm of
all factors to obtain the best estimation for the state. Based on
the derived factors from IMU pre-integration and LiDAR scan
matching, the objective function can be formulated as follows:

𝝌 = min
𝝌

1
2

{ ∑
k∈{0,…,n}

‖r (T (p⃗,k

)
, 𝜒
) ‖2

mSk

+ ‖r(z
Bk
Bk+1

(IMU )
, 𝜒

)‖2

m
Bk
Bk+1

}
(25)

where mSk
and m

Bk
Bk+1

represent the information matrix for
LiDAR matching and IMU pre-integration, which are exper-
imentally determined. In this study, the sliding window opti-
mization technique [39] is adopted to guarantee the real-time
performance where the window size is set to 100, and when the
total number of states contained in the window exceeds 100, we
keep the last state and use it as the first frame in the new window.

5 EXPERIMENT EVALUATION

5.1 Experiment setup

To verify the effectiveness of the proposed method, we first col-
lect a hand-hold dataset in a typical campus scenario with lots
of moving pedestrians. To further verify the performance of the
proposed method, we conducted the other driving experiment
in an urban canyon in Hong Kong.

Experiment setup for experiment 1 : In this experiment, the
prior map is generated by LiDAR/inertial integration with accu-
rate loop closure, based on the work in [40]. We carefully check
the generated map and centimeter-level accuracy can be guaran-
teed with the help of the loop closure. The sensors for map
generation include the VLP-16 LiDAR and XSENS MTI-10
IMU which were hand-held.

The generated map is shown in Figure 4 where Figures 4b
and 4c denote the trajectory and the hand-hold sensor kit,
respectively. During the real-time localization, the SSL/inertial
sensor set is shown in Figure 4d which consists of XSENS MTI-
10 IMU and Livox Horizon SSL. In Experiment 1, since it is
hard to obtain the ground truth of the LiDAR matching using
a hand-held data collection system, we adopt the residual of the
LiDAR matching as a performance evaluation metric which is
commonly used in LiDAR point cloud registration [41].

FIGURE 4 Prior map for the localization in Experiment 1, collected on
our campus. (a) Illustration of the map in Experiment 1. (b) Tested trajectory.
(c) Illustration of the hand-hold sensor kit for map generation. (d) Illustration
of the hand-hold sensor kit for online localization based on SSL. SSL,
solid-state LiDAR

FIGURE 5 Prior map for the localization in Experiment 2, collected in an
urban canyon of Hong Kong. (a) Illustration of the map in Experiment 2. (b)
Tested trajectory. (c) Illustration of the data collection vehicle. (d) Illustration
of the sensor kit for map generation and online localization where the three
LiDARs annotated with blue boxes are used for prior map generation. The
sensors annotated with a red box are used for online localization. Evaluated
Methods: we compare the two localization methods as follows

Experiment setup for experiment 2 and experiment 3 :
In those experiments, the point clouds are collected based
on the three LiDAR s (one HDL-32 LiDAR, one Leishen
C-16 LiDAR, and one VLP-16 LiDAR) which are shown in
Figures 5c to 5d. Moreover, the map is generated directly using
the ground truth pose provided by the NovAtel SPAN-CPT, a
GNSS (GPS, GLONASS, and BeiDou) RTK/INS (fibre-optic
gyroscopes, FOG) integrated navigation system. The gyro bias
in-run stability of the FOG is 1◦ per hour, and its random
walk is 0.067◦ per hour. The baseline between the rover and
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480 ZHONG ET AL.

FIGURE 6 Comparison of the scores of the two algorithms. The blue
line denotes the proposed method scores. The red line denotes the
conventional method scores

the GNSS base station is within 7 km. Note that the extrin-
sic parameters between different sensors are already calibrated
in our previously open-sourced UrbanNav dataset [35]. Dur-
ing the real-time localization, the SSL/inertial sensor set is the
same as Figure 4d which consists of XSENS MTI-10 IMU and
Livox Horizon SSL. In Experiment 2, we adopt the NovAtel
SPAN-CPT as the ground truth.

1. Conventional [24]: SSL LiDAR standalone matching-based
localization.

2. Proposed: SSL/inertial matching-based localization pro-
posed in this paper.

5.2 Experiment 1 in campus scenario

The difference between the conventional method and the pro-
posed method in the campus scenario is compared1. The SSL is
moved slightly faster than the typical adult walking speed dur-
ing the experiment. And yielding at a higher angular velocity is
also one of the features of this experiment. Figure 6 shows the
score results of the matching. At about 50 s of the matching pro-
cess, the matching score of the conventional method becomes
very large. Meanwhile, the LiDAR localization using the conven-
tional algorithm failed. The advantages of the method proposed
in this paper are shown here. Where conventional methods
fail, the proposed algorithm continues to provide a good ini-
tial guess so that the matching process can continue rather than
fail.

We start the experiment in static mode, which ensures that a
given initial pose facilitates the convergence of the NDT algo-
rithm. Since hand-held is different from vehicle-mounted in the
experiments, it will cause the LiDAR to reach a very high angu-
lar velocity. The motion in the Z-axis (vertical direction) will
also be more intense than that of the vehicle-mounted LiDAR.
This motion will have a significant impact on the positioning.
As Figure 7 shows, the conventional methods cannot provide a
good initial guess for point cloud matching in this case. An inac-
curate initial guess often leads to poor quality of the computed
results or even the computation fails to converge.

The proposed method can provide more trustworthy initial
guesses than the conventional method in the scenario con-

FIGURE 7 Comparison of the proposed algorithm with the conventional
NDT algorithm. (a) The visualization result of the proposed method. (b) The
visualization result of the conventional NDT algorithm. NDT, normal
distribution transformation

FIGURE 8 Comparison of the paths of the two algorithms with ground
truth. The red and blue curves denote the trajectories from conventional NDT
matching and the proposed method. (a) and (b) indicate the enlarged view in
the corresponding area, respectively

structed for this experiment. Moreover, the proposed method
can complete the entire matching and pose estimation process
in the challenging scenario, which is an essential improvement
over the conventional method.

5.3 Experiment 2 in urban canyon
experiment

Experiment 2 is conducted in a typical urban canyon in Hong
Kong. The area is not too dense with buildings and moder-
ate traffic flow. The results of the experiments are shown in
Figures 8 and 9. The paths obtained by matching using a low-
cost SSL are acceptable. Table 1 shows the positioning results of
the two methods. The mean error was defined by the absolute
pose error (APE) from the EVO toolkit [42].

 17519578, 2023, 3, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/itr2.12273 by H

ong K
ong Polytechnic U

niversity, W
iley O

nline L
ibrary on [30/07/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



ZHONG ET AL. 481

FIGURE 9 Comparison of values on XYZ-axis. (a) Trajectory in the
x-direction. (b) Trajectory in the y-direction. (c) Trajectory in the z-direction.
There is no significant difference in the XY direction; what is different is that
both algorithms show some fluctuations in the Z-axis direction

TABLE 1 Performance of the proposed algorithm in urban Canyon I (in
the unit of metre)

Results Conventional Proposed

Mean error 0.3831 0.3893

RMSE 0.4082 0.4140

Minimum error 0.0297 0.0378

Maximum error 0.7587 0.7575

Median error 0.4033 0.4092

STD 0.140896 0.140889

In Table 1, the mean value of the localization error using the
proposed algorithm is 0.3893 m, while the value obtained by
the conventional NDT algorithm is 0.3831 m, with a difference
of 0.0062 m. The minimum error value using the conventional
NDT algorithm is 0.0297 m, and the minimum value obtained
by the new algorithm is 0.0378 m. The median error of the
new algorithm is 0.4092 m, while the median error of the
conventional NDT algorithm is 0.4033 m.

The above experimental data also show that the new
algorithm proposed in this paper slightly differs from the
conventional NDT algorithm in the actual urban canyon
environment.

FIGURE 10 Demonstration of the prior map for the localization in
Experiment 3 and the experimental scene in an urban canyon of Hong Kong.
(a) Illustration of the map in Experiment 3. (b) Tested trajectory. (c) Illustration
of the data collection vehicle. (d) Illustration of the sensor kit

5.4 Experiment 3 for comparison of the
difference between proposed method and
horizon SLAM methods

Though both the proposed and SLAM methods can provide
the localization results, there is a significant difference between
our method and the existing SLAM methods. Our proposed
method has the global HD prior map for the LiDAR point cloud
matching to obtain the absolute pose for the user. The global
map is one of the inputs of our system. Furthermore, we use
the NDT algorithm with the global map and the scan from the
SSL for the point cloud matching.

In order to evaluate the proposed approach more compre-
hensively, this section compares the proposed approach with
the SSL SLAM method. We selected a new urban canyon area
in Hong Kong for Experiment 3. The experiment setup is the
same as Experiment 2 in the urban canyon. Figure 10 shows the
prior map and the trajectory of Experiment 3.

Evaluated methods: We compare the two SLAM methods as
follows:

1. LiLi-OM [10]: a real-time tightly coupled LiDAR-inertial
odometry and mapping system for SSL (Livox Horizon) and
conventional LiDARs

2. Horizon-LOAM1: an open-sourced package for Livox Hori-
zon LiDARs in a low-speed scenario. The localization results
are the LiDAR odometry results.

3. LIO-Livox2: an open-sourced package for Livox Horizon
LiDARs in a high-speed scenario that integrated the IMU
pre-integration and FGO for better estimation.

4. Proposed: SSL/inertial matching-based localization is pro-
posed in this paper.

The performance between the LiLi-OM, Horizon-LOAM,
LIO-Livox, and the Proposed method is shown in Table 2. We
also use the EVO toolkit [42] for the evaluation. LiLi-OM will
be failed while running with our dataset. And It can be seen
there are significant improvements from the proposed method
and LIO-Livox to the Horizon-LOAM like most LO methods
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482 ZHONG ET AL.

TABLE 2 Performance of the proposed algorithm in urban Canyon II (in
the unit of metre)

Results LiLi-OM Horizon-LOAM LIO-Livox Proposed

Mean error Fail 65.9767 1.2160 1.0462

RMSE Fail 82.9049 1.3200 1.1863

Minimum error Fail 14.8182 0.1062 0.1351

Maximum error Fail 175.6583 3.9052 3.5909

Median error Fail 37.1513 1.1618 0.9704

STD Fail 50.2026 0.5135 0.5592

FIGURE 11 Comparison of values on Z-axis. The Horizon-LOAM
occurs significant drift in Experiment 3. The red, cyan, and blue curves denote
the trajectories from Horizon-LOAM, LIO-Livox, and the proposed method,
respectively

FIGURE 12 Typical drift occurs while using the Horizon-LOAM for
mapping

would have a drift in the z-axis like Figures 11 and 12 show. The
proposed method has better performance than LIO-Livox and
the mean errors are 1.0462 and 1.1260, respectively.

5.5 Discussion about the effect of different
FOV

To experimentally show the differences between SSL laser scan-
ning and conventional mechanical LiDAR laser scanning, we

FIGURE 13 Histograms of eigenvalues of the SSL and mechanical
LiDAR matching, associated with the position and orientation. The blue
histogram shows the histogram obtained using solid-state LiDAR. The orange
histogram denotes the histogram obtained using conventional mechanical
LiDAR. (a) The histogram of 𝜆1 indicates the constraints in the x-direction. (b)
The histogram of 𝜆2 indicates the constraints in the y-direction. (c) The
histogram of 𝜆3 indicates the constraints in the z-direction. (d) The histogram
of 𝜆4 indicates the constraints of the roll. (e) The histogram of 𝜆5 indicates the
constraints of the pitch. (f) The histogram of 𝜆5 indicates the constraints of the
yaw

analyzed the histogram of all eigenvalues in the NDT match-
ing process for two different LiDARs in the same segment path.
As shown in Figure 13, the X-axis is the eigenvalues and the Y-
axis is the frequency density of occurrences of the values within
a bin. Statistically, we find that the eigenvalues in the case of
using SSL are generally smaller than those in the case of using
conventional mechanical LiDAR. This is caused by the small
FOV of SSL resulting in weaker constraints in the correspond-
ing direction compared to the conventional mechanical LiDAR.
Alternatively, using the novel SSL makes NDT matching more
challenging due to the limited FOV.

5.6 Discussion: impact of the grid size on
the positioning performance of the NDT
matching

Different grid sizes of the NDT can significantly impact the
system solution. After adding the new SSL to the system, the
impact of grid size on the system solution accuracy and compu-
tation time is also worth discussing. Figure 14 shows the object
in the frame of the SSL point cloud and the grid size effective-
ness illustration. The NDT algorithm would divide the point
cloud into several voxels, as shown in Figure 14b. If the grid size
is large, there would be only one voxel for the whole point cloud
which means that the n in Equation (17) is only one in this case.
And the small grid size means the n would be larger than the
large grid size case which would be more computational load
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ZHONG ET AL. 483

FIGURE 14 (a) The road sign and its point cloud from SSL. (b) The
illustration of the different grid sizes in the NDT algorithm

FIGURE 15 (a) Large grid size for the road sign. (b) Medium grid size for
the road sign. (c) Small grid size for the road sign. A smaller grid size would
add more computational load for the estimation

TABLE 3 The used time of the NDT algorithm under different grid sizes
(in the unit of milliseconds)

Grid edge length 0.5 m 1 m 1.5 m 2 m

Mean 153.6406 222.2349 153.1312 187.9326

STD 67.9078 87.0368 46.9278 79.1065

Maximum 1215.20 1504.80 1019.10 1678.40

Minimum 84.862 93.999 88.821 92.028

while solving Equation (17). An illustration of different grid
sizes for the voxelization of the road sign is shown in Figure 15.

Table 3 shows the align time of the NDT algorithm for differ-
ent grid sizes, and the best performance is found for a grid edge
length of 1.5 m. In other words, the least amount of aligning
time is required under these conditions.

We also evaluated the accuracy of the NDT algorithm for
different grid sizes. As shown in Table 4, the mean value of
the localization error is the smallest for a grid edge length of

TABLE 4 Error value of NDT algorithm at different grid sizes (in the unit
of metre)

Grid edge length 0.5 m 1 m 1.5 m 2 m

Mean error 0.3919 0.3812 0.3774 0.3946

RMSE 0.4274 0.4052 0.4016 0.4268

Maximum error 1.9189 0.7694 0.8171 1.5011

Minimum error 0.0704 0.0592 0.0809 0.0460

FIGURE 16 The results of the convergence of the NDT algorithm for
different initial poses. The blue circle indicates the given initial pose, and the
red star indicates the convergent poses

1.5 m. The maximum value of the localization error at a grid
edge length of 0.5 m is larger than the other three sets of data.

5.7 Discussion: sensitivity analysis of the
NDT matching upon different initial guess

Current evaluations of the performance of new low-cost SSL
are incomplete. The accuracy of the initial pose has a direct and
significant impact on the results for LiDAR localization. The
small FOV of the new SSL will undoubtedly make it more likely
to encounter unknown problems than the 360◦ laser scan of a
mechanical rotating LiDAR [43]. Therefore, it is necessary to
explore the effect of different initial poses on the localization
using low-cost SSL. As can be seen from Figures 16 and 17,
the convergence points at different initial poses do not con-
verge to the same point for the same scene as the mechanical
rotating LiDAR. The point cloud of SSL converges in the sys-
tem to obtain different solutions. Usually, the closer the solution
obtained by convergence is to the (0, 0) point, it indicates the
system’s better convergence performance at this initial posi-
tional. The subsequent performance of the system in different
initial positions is also an interesting point. In Figure 17, the
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484 ZHONG ET AL.

FIGURE 17 The points are surrounded by triangles indicate the initial
poses that will eventually cause the matching to fail. Only the initial poses are
changed from the 2D plane, that is, x, y, θ

FIGURE 18 Comparison of the effect of angle changes between 0◦ and
22.92◦ on the convergence of the NDT algorithm. The NDT algorithm can
complete the subsequent localization within this angle variation range. (a) The
case where the initial angel is 5.73◦. (b) The case where the initial angle is
11.46◦. (c) The case where the initial angle is 17.19◦. (d) The case where the
initial angle is 22.92◦. (e) The case where the initial angle is 0◦

points circled by triangles are the points that will eventually
make the system fail to converge, and the matching eventually
fails. These points do not seem to have any pattern and cannot
be judged simply from a distance between the initial posture and
(0, 0).

This experiment also explores the practical performance of
the new SSL with varying angles. Figure 18 represents the initial
angle that allows for successful subsequent localization. While
Figure 19 represents the convergence of the NDT algorithm
when the angle is negative, all the cases shown in the figure
make the matching fail. Unlike the previous [43] in this respect,
the SSL can only vary between 0◦ < θ < 22.92◦. Otherwise, the
system cannot converge. Figure 20 shows that the conventional
mechanical rotating LiDAR can record all the surrounding fea-
tures even if a certain angle rotates it. In contrast, once an
angle offsets the SSL, it will result in the incomplete record-
ing of the surrounding scene, which is a severe problem for

FIGURE 19 The angles that would make the convergence value of the
NDT algorithm deteriorate. (a) The case where the initial angle is −5.73◦. (b)
The case where the initial angle is −11.46◦. (c) The case where the initial angle
is 28.65◦

FIGURE 20 Comparison of the two LiDARs laser scanning. (a) The
matching process of the conventional LiDAR. (b) The matching process of the
solid-state LiDAR

autonomous vehicles, while the scene’s complexity also has a
significant impact on the new SSL.

6 CONCLUSIONS

Achieving accurate and low-cost localization is highly required
by ADV. In this paper, we investigate the potential of low-cost
SSL-based localization with a prior map. To alleviate the prob-
lem of small FOV of low-cost SSL, this paper adopts the IMU
to provide a high-frequency initial guess for the LiDAR match-
ing. The evaluated datasets show that the proposed method can
achieve ∼0.5 m of localization accuracy. With the help of the
IMU, the robustness is improved during high dynamic motions
in urban scenarios. Moreover, we also provide the sensitivity
analysis of the SSL-based matching upon the initial guess.

Considering the advantage of the low-cost SSL, installing
multiple SSL on one autonomous driving vehicle does not have
an unacceptable cost increase for the cost of production. We
will explore the performance of multiple low-cost SSL in urban
canyons in our future work. As shown in Figure 21, assuming an
ADV with four low-cost SSL, there is an opportunity to com-
pensate for their small FOV when used simultaneously to catch
up with the performance of high-cost conventional LIDARs.

In the future, we will evaluate the proposed systems in more
complex scenarios. Firstly, we will investigate the map update
using multiple SSL. In practice, the environments are changed
which causes the inconsistency between the real-time environ-
ment and the previously built point cloud map. Therefore, we
will also explore the update of the HD map using the low-cost
SSL to guarantee the freshness of the map. Furthermore, wider
FOV is vital for map updates and will directly determine the
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ZHONG ET AL. 485

FIGURE 21 Idea of combining multi-solid-state LiDAR sensors. (a)
Illustration of conventional LiDAR scanning. (b) Illustration of
multi-solid-state LiDAR scanning

quality of the updated map. Secondly, the limited field-of-view
(FOV) of the SSL can lead to the degeneration of the local-
ization. Unlike a single SSL, the degree of FOV provided by
multiple SSL will be close to that of a conventional mechanical
LiDAR, which means that we can acquire more point clouds in
a single-frame scan. As a result, the geometry constraints can
be significantly improved because more point clouds can pro-
vide better constraints for point cloud matching. Therefore, we
will investigate the potential of multiple SSL-based localization
in more complex scenarios.
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